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Phase Determination from the Karle-Hauptman Determinant. II. 
Connexion between Inequalities and Probabilities* 

BY C. DE RANGO, G. TSOUCARIS AND CH. ZELWER~" 
Laboratoire de Bellevue, CNRS, 92-Bellevue, France 

(Received 7 June 1973; accepted 14 August 1973) 

The probabilistic properties of a Karle-Hauptman determinant are investigated, with particular 
reference to the case where all elements are assumed to be known except one. In previous papers it has 
been shown that the matrix associated with a Karle-Hauptman determinant can be interpreted as a 
covariance matrix, and also that the probability law associated with one unknown element is a complex 
Gaussian law centred at the expected value given by the regression-plane equation. These results are 
now extended to the case where several structure factors are unknown. Furthermore, the connexion 
between inequalities, the Sayre-Hughes equation and probability relations is discussed. It appears that 
the Karle-Hauptman inequality defines the allowed domain as a hyperellipsoid, the centre of which 
corresponds to the most probable set of structure-factor phases. Factors concerned in the selection of a 
determinant suitable for efficient phase determination are given. 

I. General scope 

The aim of this paper is the development of useful 
mathematical relations for phase determination, in 
which are simultaneously included a large number of 
structure factors. 

In a previous paper (Tsoucaris, 1970, referred to 
hereafter as paper I; see also Tsoucaris, 1969; de 
Rango, Tsoucaris & Zelwer, 1969), it has been shown 
that the central-limit theorem leads to a very restrictive 
connexion, in the statistical sense, between structure 
factors included in a Kar le-Hauptman determinant, 
the m-dimensional Laplace-Gauss distribution and, 
as a consequence, the 'maximum determinant rule'. 

In this paper we report further results to the proba- 
bilistic properties of a Kar le-Hauptman determinant. 

I. 1. Probability law for one structure factor included in 
the determinant or regression-plane equation (§II) 

If it is assumed that all elements of a Am+l determi- 
nant (as defined in Table 1) are known except one, 
denoted by Eq=E,,+I.q, the probability law associated 
with this unknown element is a Gaussian law centred 
at the expected value: 

1 
E q = -  -.Dq~ ~. DpqEp . (1) 

The right-hand side includes, of course, only the re- 
maining known elements; Dpq and Dqq are minors of 
D,, defined in § II. 1. 

A proof  of this equation was first given by de Rango 
(1969) and quoted by Tsoucaris in the above references. 
In the present paper the distribution of 

Xq= E q -  Eq (2) 
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Advanced Studies, Parma 1970, York 1971. The essentials of 
this work partly cover the thesis of one of us (de Rango, 1969). 
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Table 1. Definition of  determ&ant A,, + x whose 
minor D,, is &dicated by dotted lines 

All elements of D,, are assumed known in modulus and phase. 
The last row (or column) includes the unknown elements of 
A,,,+t. The shorter notations used in the text correspond to: 
U v a  = U H p  - Hq  ; E q  --- E L  - H q .  

1 
zl,,+t = ~-  

| . . .  U-Hp . . . .  U-Hq 

U H p  . . . 1 . . . .  U H p  - Hq  

U H q  • • • V H q -  H p  . . . .  1 

E-L 

EL .... i i .  EL-Hp E L ' H q  N 

E-L+Hp 

E-L+Hq 

will be extensively studied, both from theoretical and 
practical points of view. Also a generalization will be 
given for the case of m - s  (s < m) unknown structure 
factors which is, again, an ( m -  s) dimensional Laplace- 
Gauss distribution. 

Furthermore, the expected values relative to a given 
structure factor but obtained from different determi- 
nants can be averaged to provide a more precise evalua- 
tion of the unknown phase. 

I. 2. Connexion between inequalities and probabilities 
(§III) 

A strictly correct probability theory should yield 
a zero value for the probability density of all sets of 
structure factors which do not fulfil the inequality 
Am+l > 0. This requirement is not fulfilled for a Gauss- 
Jan distribution which falls off to zero only for in- 
finite values of [E['s. Of course, this is due to the approx- 
imations inherent in the central-limit theorem, especi- 
ally to the requirement that the number of atoms 
N ~ c~, However, there exists a very simple connexion 
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between inequalities and probabilities in the case of 
( m - s )  (1 < s _< m) structure factors considered variable, 
all others being assumed as known and fixed. These 
( m - s )  variables span an ( m - s )  dimensional space. It 
will be proved that: 

The inequality Am + ~ > 0 defines the allo wed domain in the 
(m-s)-dimensional space, as a hyper-ellipsoid, the cen- 
tre of  which corresponds to the most probable set of  
structure factors. 

In the special case, m - s  = 1, the statement amounts 
to a simple one: for the centrosymmetric structures, the 
allowed domain reduces itself to a segment of a straight 
line; for the acentric case, the allowed domain for a 
given modulus is an arc of a circle and the most prob- 
able phase is given by the middle of this allowed arc. 

Besides its theoretical interest, this statement pro- 
vides a useful tool to improve practically the available 
theoretical formulae, as is described in §IV. 

As the theory developed in this section involves 
probabilities, inequalities and also the Sayre-Hughes 
equations (Sayre, 1952; Hughes, 1953) we develop 
briefly the most useful results concerning Xq by using 
a uniform notation. Let us recall first the definitions of 
UH and EH: 

N N 

Un= ~ nj exp (2niH. rj); EH= ~ gj exp (2rciH. rj) 
J = l  j = l  

where N is the number of atoms in the unit cell, nj is 
the unitary atomic scattering factor with: 

~ n ~ = l ;  gj=nj  n~ ; 
j = l  

rj is the vector which defines the position of the j th  
atom in the unit cell. When all atoms are equal we 
have" 

For unequal atoms the square root of N has to be re- 
placed by E000. 

(a) Inequalities: Karle-Hauptman determinant 
Let us choose arbitrarily m vectois in the reciprocal 

space denoted by Ha, (q= 1 , . . .  m), and consider the 
differences: 

(Hp-Ha)  p , q = l , . . . m .  

The corresponding structure factors Unp H = Upa form 
• . - -  ¢ /  

a square mamx of order m. It is well known that the 
determinant D,, of this matrix has the property of being 
non-negative (Karle & Hauptman, 1950): 

O, ,=det  (Ui~p_n~)>0; (for any m).  (3) 

A strictly equivalent form of this inequality is given by 
(24): 

I IXa l<VN. r [  m < N + l  

where r involves minors of D m defined in §III. 2 
[equation (25a)]. 

(b) Sayre-Hughes equalities and correlation coefficients 
between m structure factors 

Let us choose two fixed vectors Hp and H~ and a 
random vector L. The correlation coefficient rpq be- 
tween two structure factors" 

Ep=EL_Hp and Ea=EL_no,  

is defined by the Hermitian product" 

L 
rva=EL-up.  E£_nq  = Un,~_np = Uap. (4) 

This equation is exactly the Sayre-Hughes equation 
written with a different notation. Next, let us choose m 
fixed vectors and consider the m 2 equations (4), ob- 
tained for p, q = 1 , . . .  m; we notice that the right-hand 
sides of these equations are the elements of a Karle- 
Hauptman determinant Dm. 

Moreover, if we edge this determinant with a row 
whose elements are the m structure factors E a appearing 
in (4), and the corresponding column with elements 
E~, we obtain again a Karle-Hauptman determinant 
denoted by Am+l (Table 1). The D m and Am+ 1 deter- 
minants play an essential role in the theory of probabi- 
lities. 

Although both Dr, and A,,+~ are Karle-Hauptman 
determinants, we adopt a distinct notation in order to 
emphasize that their meaning in probability theory is 
essentially different. Dm is the determinant of the co- 
variance matrix denoted by [U], and therefore, includes 
only known and fixed structure factors; on the con- 
trary, A,,+I includes also in the last column and row the 
m random (unknown) variables. Once the correlation 
coefficients are defined, one can use the central limit 
theorem to obtain the Laplace-Gauss functions and the 
results given in the next section. These are classical 
formulas conveniently expressed in crystallographic 
notation. However, a fact proper to this crystallo- 
graphic problem must be underlined: 

the correlation coefficients Uap and the random vari- 
ables E a are of  the same nature, in the physical sense; 

that is to say, they all are structure factors. The di- 
stinction comes exclusively froth the fact that E a are 
considered as unknown whereas Uap are considered as 
known. 

(c) Probabilities 
First, let us notice that the matrix, whose determi- 

nant is Am+,, is positive-definite. In order to exploit 
practically inequality (3), we should calculate the value 
of A,,+I for all possible combinations of phases. Ac- 
cording to (3), all sets of phases which lead to a nega- 
tive value of Am+l are to be rejected. In other words, 
the correct solution is to be found among those sets 
corresponding to a positive (or null) value of Am+t 
(Fig. 1). 
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Unfortunately the criterion of positivity of A~+~ 
(and of the eigenvalues) is not restrictive enough: 
generally too large a number of allowed sets remains to 
make such a method alone sufficient to solve the struc- 
ture directly (except for a simple structure). 

However, the probability theories lead to a new 
result which further restricts the allowed range of 
phases: let us consider both determinants Dm and 
A,,+I; it has been shown that: 

Among all sets o f  phases which are compatible with 
inequalities, the most probable one is that which leads 

• to a maximum value of  A,,+~. 

Thus, 'the maximum-determinant rule' allows the 
simultaneous determination, in the statistical sense, of a 
large number of phases. The proof of this rule involves 
the central-limit theorem and as a consequence the m- 
dimensional Laplace-Gauss distribution (7). From this 
distribution (7), one obtains immediately the one- 
dimensional distribution of one unknown element, say 
Eq, all other elements of A~+~ being known. The mean 
value Eq given by equation (1) defines in probability 
theory the 'regression-plane equation' or the regression 
equation. Equivalently, we can write from (1) and (2): 

I t olmo,, o,o--=01- 
This statistical relation becomes a strict equality when: 
m = N +  1 or m - - N  [r is given by equation (25)] 

X ~ = 0 1 f o r m = N + l ;  [ I X q l = r l f o r m = N .  

In paper I, the 'joint probability distribution' of m 
structure factors (Ex. . .  Era) has been considered.* 
Here, the notion of 'conditional probability distribu- 
tion' is more restrictive in the sense that not only are 
all elements of D,,, known but also all elements of the 
last column of Am+x, except one, namely Eo. 

I I. 1. Most probable value of  Eq and regression plane 
equation 

It will be shown below that the most probable value 
for Eq denoted by Eo is given by: 

n| 

_~ D,,,E,,; m<_N+ 1. (la) 
Eq - Da a = p ~ 

P # q  

The expressions Da0 and D w are elements of the matrix 
[U] -1 defined by: 

D . . -  O,~g-1. D p . = ( -  1) "+" 6~-1 
D,. ' D,. 

The J,~,~_ ~ and &~L~ are minors of D,, with the following 
notation: the order of the determinant will be sub- 
scripted and the indices of the rows and columns sup- 
pressed in D,. will be indicated on the upper right as 
follows: 

P q 

-- ~ - 6~t _- ~ F -  , J~P_I 
q , 1 qL l J  

5,q#_l is a principal minor of Dm where the qth row and 
column are suppressed; 6~P_~ is obtained from D,, by 
suppressing the qth row and the pth column. 

I. 3. Criterion .['or the selection of  a determinant suitable 
for efficient phase determination (§IV) 

'Intuitively' one would expect that 'a good' deter- 
minant is one which includes a great number of large- 
modulus E's  (§III); this is certainly true, but informa- 
tion theory provides a precise criterion (de Rango, 
1969). Assuming that all elements of D,, are known, 
the efficiency in determining the phases of the unknown 
elements of the last row of Am+l depends solely on the 
value of Dm: 

The smaller the value of  Din, the higher the efficiency of  
probability formulae in phase determination. 

This statement, whose proof and implications will be 
discussed in §IV, is directly connected with an im- 
portant property of a Karle-Hauptman determinant: 
the content of the allowed region is proportional to 
Om. 

H. Probability theory: regression law 

The aim of this section is to investigate the distribution 
law of one structure factor included in a Karle-Haupt- 
man determinant under the condition that all others 
are known and fixed. In probability theory such a 
distribution is called a conditional probability distribu- 
tion. 

II. 2. Conditional probability law of  the unknownstructure 
factor Eq 

The distribution law of this structure factor Eq de- 
duced from the general relations of probability theory 
isff 

* In paper I, this law has been improperly called 'condi- 
tional probability'. 

I" Eq denotes the expected value of Eq whereas E~ denotes 
the complex conjugate of Eq. 

Am+l 

I 
t • allowed 

most probable 

I 
forbidden 

Fig. 1. Diagram showing the possible and most probable 
solutions as a function of Am+l. 
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p(EJ[U], El... Era)- 
1 

l,/2_~o.q exp ( 2a~ ) 

centrosymmetric case (5a) 

1 IE~-&I  ~ ( 
non-centrosymmetric case (5b) 

with Eq defined by equation (la) and a~ given by: 

1 
a°z= D~q (6) 

In other words, the value of Xq is a centred Gaussian 
variable with a variance a~ z and equation (la) defines 
what is called in statistics the 'regression plane'. 

We outline the proof of(I) and (5): the joint proba- 
bility law of the m-dimensional random variable E 
(E l . . .  Era) is a multidimensional Laplace-Gauss law* 
(Tsoucaris, 1969, 1970, equation 8). 

1 
p(E1. . . E~ . . . Em/[U]) = (2rc),,/ZDm,/Z exp(-½Qm); 

centrosymmetric case (7a) 

1 
p(E~ . . . Eq . . . Em/[U])- rc"D~ exp (-Qm); 

non-centrosymmetric case (7b) 
with 

Dm--Am+l 
Q m=N Dm ~- E EuE~Dva =E[U]-'E+" (8) 

P , q  

By deriving Qm with respect to one random variable one 
immediately obtains equation (1). The Gaussian cha- 
racter of E~ [equation (5)] is a consequence of the 
central-limit theorem which is stated here in crystallo- 
graphic terms (Appendices I and II): 

If m random variables (E~...  Era) are themselves a 
sum of N random variables, i.e. the N atomic contribu- 
tions xsq: 

N N 

E~=E~._nq= ~ xsq= ~ g s  exp [2~ri(L-H,). rA, 
j=l j=l 

the correlation coefficients being known and fixed, as 
given by (4), and if N --+ 0% then, the m variables follow 
a Laplace-Gauss distribution; any subset of ( m - s ) ,  
(1 <s<m)  also follows a Laplace-Gauss distribution. 
For s = m -  1, the distribution is reduced to the familiar 
Gaussian distribution, centred at the expected value 
given by equation (la). In simple words, the distribu- 
tion laws 5(a) and 5(b) state that a one-dimensional 
(real or complex) section of the m-dimensional Laplace- 
Gauss distribution is a Gaussian distribution (Fortet, 
1965). 

* According to classical notation, the expression to the left 
of the bar on the left-hand side of (7) contains random vari- 
ables (unknown) ; the expressions to the right of the bar are as- 
sumed known and fixed. [UI means: 'all structure factors in- 
cluded in matrix [U] whose determinant is Din'. 

Remark" The Hermitian form Qm is a random vari- 
able whose probability law is the Z 2 distribution with 
m 'degrees of freedom'. 

II. 3. Assessment of the probability associated with the 
unknown phase 

Since the modulus of Eo is known, the probability 
law (5) leads us to a probability law for the phase (or 
sign) of E~. 

(a) Centrosymmetric case 
The probability that the signs of Eq and Eq are identi- 

cal is given by the expression: 

Po(Eq)=½+½ th ( - ~  lEqEql) . (9) 

In the special case m=2,  we obtain Woolfson's well 
known formula with a correction coefficient [1/(1- 
U~)]" 

P + ( E K - n ) = ½ + ½ t h (  [IEK-nIE-nEK] ) V N ( 1  - U~) " (9a) 

(b) Non-centrosymmetric case 
The probability law for the phase difference t, can be 

derived immediately from expression (5b): 

p(e~)- exp (Aq cos eq) (10) 
2Mo(Aq) 

where 
eq = ~b(Eq)-~b(/~); A~=2[EqEql/a~. 

Then, the conditional probability that cos e a > x, given 
Aq, is defined by the function" 

1 exp Aqx 
P(x)= dx if [x[<l (11) 

x Mo(Aq)~/ l -x  z 

For practical applications a useful weighting factor 
derived from the distribution (10) is given by" , 

Wq= cos eqp(eq)deq=Ii(Aq)/Io(Aq). (12) 

In the special case m=2,  the expression (11) gives 
again a well known formula1- (Cochran, 1955; Haupt- 
man, 1969), since we have: 

& = E K - .  

1 
~- - l - I U . l ~  

aq Dqq 
21E~_r~EKU~I 

Aq=- 
1-1Unl 2 

1 u~  : 
K - H  

£...E;_.. 

t However the factor ( 1 -  [Unl 2) does not appear in Coch- 
ran's original formula. Its importance has been emphasized 
in Paper I (Fig. 1). 
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The distribution (10) becomes more restrictive when 
the order m increases, as is pointed out in Fig. 2 where 
are plotted the curves corresponding to the cases m = 2 
(curve a) and m = 29 (curve b) for one element (E~ = 
1.12) of a determinant of isoniazide (Tsoucaris & 
Marsh, 1964). 

R e m a r k :  All the above formulae remain valid if the 
phase of a structure factor ~b(E~) is replaced by the 
phase of the structure invariant: 

~(Ta) = :(E~') + ¢(U~,) + ¢(E¢) 

as will be indicated in a forthcoming paper (Rango, 
Tsoucaris, Zelwer & Sarrazin, 1974, referred to as 
Paper III). 

II. 4. General i za t ion  o f  the regression-plane f o r m u l a  

When any number s (s < m) of structure factors Ep of 
the last row are known, the distribution of the ( m - s )  
unknown E's  can be derived from the m-dimensional 
law (7) (Fortet, 1965): 

(D~,_~) x/z 
p(E~+,,  . . . Em/[U], E l . . .  Es)= (2g)(m_s)/Z 

X exp ( -½Q'm-~)  centrosymmetric case (13a) 

p(E~+t,  . . . Em/[U], Ex . . . E ~ ) -  D~._~ 
7~m - s 

x exp (-Q~,_~) non-centrosymmetric case (13b) 

with: 
Q'm - -1  - , -  X[U]m_,X + (14) 

The Hermitian form Q'm-s is deduced from Q',, ac- 
cording to the following scheme: 

] 
fiE), X] 

[U]ff!, denotes the matrix whose determinant is D~,_,, 
derived from the matrix [12]-' by suppressing the s 
rows and columns corresponding to known elements. 
The ( m - s )  elements Xq of the vector X are defined as 
follows: 

r = s + l  

oq. = ~ DprEp (15) 
p = l  
p~q 

in which D~ is the element of the inverse matrix of 
[U]~,_~ ~ and u~ is defined by the linear combination of the 
product of known structure factors and elements of the 
matrix T. 

This law will be further examined in a forthcoming 
paper. 

II. 5. Case o f  several  de t e rminan t s  

In the course of practical applications, it often hap- 
pens that the same structure factor, denoted Eq, ap- 
pears in several determinants, 

In this case, it would be tempting to evaluate an 
average value by summing over all £q's obtained by 
these determinants (each of them being labelled by the 
index i). In performing this average, it is implicitly 
assumed that the terms are independent of each other 

E¢~ ( /~>, .  (16) 

It might be better to weight each term by the corre- 
sponding inverse variance" 

1 1 ~ co,(E,~),; 09,- (a z), =(Doa),. (17) E . -  '=' 

l = l .  

These expressions are a convenient way of taking into 
account the 'redundancies' which occur in the course of 
practical crystallographic structure analysis by the de- 
terminant method. By redundancy is meant the fact that 
the same structure factor E~, or a symmetry-related 
structure factor, appears several times in different 
Am+I(L) determinants. A more sophisticated way of 
treating redundancies is given in paper III. 

The number of A,,+I(L) defined from a given deter- 
minant Dm could be very large since L can sweep all 
observed reciprocal space. However, for each Am +I(L) 
all structure factors EL-n~ are not observed; also, it is 
convenient to delete the rows and columns correspond- 
ing to the structure factors E,._nq whose moduli are out 
of reach of the experiment. 

This procedure leads to the consideration of a group 
of different Dr determinants ( r < m )  issued from the 
same D,, rather than only one determinant. For in- 
stance, in the case of Jamine (Karle & Karle, 1964) the 
practical application of formula (1) (de Rango, 1969; 
Paper III) has been performed by considering a large 
number of different Dr determinants (10 < r < 18) issued 
from the given determinant D18. Of course, not all 
zlr+~(L) are to be considered; (the total number of ob- 

p(IE:ql) 

1 

0.5 

I 
I 
i 
i 
i 
i 
I 

30"  60° pd 90° 180 ° £q  
D 

a l l o w e d  arc  f o r b i d d e n  arc  

Fig. 2. Integrated probabilities computed from equation (10) 
for one structure invariant corresponding to one element 
of an order 30 Karle-Hauptman determinant of isoniazide 
(IE~I=l'12) in case m=2 (Aq=2"6) curve (a) and m=29 
(Aq= 13.6), curve (b). The correct values of leql are respec- 
tively 50 and 6 °. In the case m = 29, the values of leq[ > 74 ° 
are forbidden by inequalities whereas in the case m=2 all 
values are allowed. 
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served structure factors in the Jamine data is 1831) 
only some hundred of them are necessary to perform 
the determination of the structure. 

In the non-centrosymmetric case, the complex ex- 
pression (16) amounts to one equation for moduli and 
another for the tangent of the phase: 

IE~]~ sin ~(Eq)~ 
tan (0(Eq) = ,=1 (18) 

i = 1  

In a recent paper, Karle (1971) has examined the 
relation between Eq and the right-hand side of(18), as- 
suming that Eq is proportional to the average estima- 
tion in equation (11), he then indicates that algebraic 
analysis involving expansions of the determinants and 
use of the structure factors expression should verify 
this assumption. 

However, for high-order and small-value determi- 
nants (say m = 2 0  for N = 5 0  to 100) a reasonably ac- 
curate value of Eq can be obtained even with one term 
in (16). An idea of the agreement for an actual structure 
will be given in Paper III. On the contrary, the results 
we have obtained both in centrosymmetric and non- 
centrosymmetric cases, indicate that for low-order de- 
terminants, it is likely that a very large number of terms 
should be included to obtain an accurate value of Eq. 

IlL Connexion between inequalities and probabilities 

III. 1. m - D i m e n s i o n a l  case 

In this section we consider the m-dimensional prob- 
ability law (7)as well as the conditional probability 
laws (5) and (13). 

U2 

M2 
B2 

U2 t M2 

y ~ - . _ . ~  M~ 
; I , .  . , _~ 

M U~ "" " 

(a) (b) 

Fig. 3. Boundary ellipses in two special cases (a) m=2. The 
ellipses surface is: S~ = zc2122 = reD2 = ~z(1 - U~); the ellipse 
axes are: OB~ = 2~ = 1 + Un, OB2 = 22 = 1 - U.; the coor- 
dinate axis intersections are: O M ~ = O M 2 = a = V J -  U 2 
(b) m=3, s---1. The ellipse surface is: S2=rcDa(1 U~i 
the ellipse centre coordinates are: Ox= UKUa, Oy= UK-nU3; 

1_ U~_H 

Let us consider the determinant Am+ 1 a s  a function 
of m variables (real or complex) included in the last 
row (or column): 

Am+I(E1.  . .E,,)>__O. 

In the non-centrosymmetric case, the m-dimensional 
complex function is, in fact, a special 2m-dimensional 
real function of variables A~ . . . A,, ,  B1.  . . Bin; A, ,  and 
Bm being the real and imaginary parts of Era. For sim- 
plicity, we will refer to an m-dimensional function 
whether the function is real or complex. 

In all cases, the limiting equation A, ,+I=0 defines 
the inequality boundary which separates the m-dimen- 
sional space into allowed and forbidden regions. 

From the theory developed or recalled in this paper, 
and summarized by the following formulae: 

N 
p ( E 1 . . . E m ) = K '  exp 9 , ,  "Am+l (19a) 

if Am + 1 >- 0 (20a) 
or, equivalently: 

p ( E ~ . . .  E , , ) = K  exp (-O,,) (19b) 
if 

O < Q,, < N , (20b) 

it is clear that both the equiprobability surfaces [equa- 
tion (19a)] and the inequality boundary (20a) are de- 
termined by the relation: 

A m + l ( E 1 . . .  E,,) = constant. (21a) 

Alternatively the same results can be equivalently 
expressed in terms of the Hermitian form: 

Qm(E1. . . E,,) A,,,+I(E~ . . . E,,) 
N = 1 . . . . . . . . . .  D,, - constant. (21 b) 

The Qm ( E l . . .  Era) expressions have the advantage of 
providing a clear geometrical image, as described be- 
low. 

(a) Reg ion  a l lowed  by  inequalit ies 

The boundary surface is a hyperellipsoid denoted by 
f0 and defined by the equation: 

1 
N Q , , ( E 1 . . .  Era)= 1. (22) 

In the real case, we point out two geometrical prop- 
erties of the allowed region f0, which will be used in 
§IV (in the complex case, a similar geometrical con- 
struction can be imagined): 

(1) The content off0 is proportional to D,, (indepen- 
dent of Am+l), the content off0 is given in the real case 
by Kendall (1961): 

_ _  T ( . m /  2 

V =  2 Dm (23) 
m I - ( m / 2 )  " 

(2) The proper axes of a hyperellipsoid Q,, are pro- 
portional to the eigenvalues of the matrix [U]. More- 
over, the coordinates of the intersections between the 
inequality boundary and the axes of the bases of the 
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variables (1?,1...Era) are proportional to the corre- 
sponding standard deviations (a~ . . .  am) given by equa- 
tion (6) (Fig. 3). 

Equiprobability surfaces 
The equiprobability surfaces coincide with hyper- 

ellipsoids homothetic to the hyperellipsoid f0. The 
probability density has the highest value at the centre 
of the hyperellipsoid which coincides with the origin 
( E ~ = 0 , . . .  Era=0). 

It should be noted that equation (19) does not de- 
scribe correctly the probability density near the bound- 
aries. This is a consequence of the fact that the central 
limit theorem, which is the basis of equation (19) is 
only an approximation. A strict probability theory 
should yield a zero probability density in the forbidden 
region, whereas in equation (19) the probability steadily 
decreases from the centre, is equal to Ke-U at the in- 
equality boundary and becomes zero only at infinite 
distance. 

For m =  1, in the non-centrosymmetric case, the 
boundary hypereUipsoid reduces to the familiar com- 
plex circle: 

]EIIZ=A~ + B~ <_N. 

Fig. 3(a) formally corresponds to the centrosym- 
metric case with m--- 2 (variables: U1 = EK/I/N, U2 = 
E,z_n/VN). The surface of the allowed region is: V= 
riD2. 

For m > 3 the hyperellipsoid can have any orienta- 
tion with respect to the coordinate axes ( /21. . .  U,,) 
whereas for m = 2  the axes are at 45 ° to the coordinate 
axes. 

Let us examine now the case where s structure fac- 
tors of the last column ate known and fixed, the re- 
maining being considered as variables. It follows from 
equations (14) and (15) that the maximum probability 
is obtained for: 

E~=(Eq)s; q = s +  l , . . . m .  

The set of (Ea)s defines the centre of a hyperellipsoid. 
Therefore, we can state: 

For any set of ( m - s )  structure factors included in 
one row or column of a determinant Am+l, the allowed 
region is a hyperellipsoid. The most probable set of  val- 
ues is that which corresponds to the centre of  the allowed 
hyperellipsoid. Fig. 3(b) corresponds to the centrosym- 
metric case with m = 3, s =  1; (variables UI, Uz, with 
U3=EJI/N as fixed value) the volume of the allowed 
hyperellipsoid, which is reduced to an ellipse, is: V= 
zcD3(1 - U]). 

III. 2. Regression-plane equation (special non-centrosym- 
metric case: s = m - 1 )  
(a) Inequalities and expected values 

Karle & Hauptman (1950) have shown that X~ is lim- 
ited in modulus by a constant r: 

IX~I = VNI U~ -d~I <_ [/N . r . (24) 

This inequality is strictly equivalent to the familiar 
inequality D,,,+I > 0. In relation (24) r is a real positive 
number defined as follows: 

t~m + l , m + l (~qq 
r 2 ~ .  ~ m  6a.,,+~;a,m+l[ z . (25a) 

m - i 

d;~+l.m+l d~ and fi~.m+x; ,.t,+l , ,,_~ are obtained from a 
determinant D,,,+I as explained in §II. I (the last col- 
lumn and row of Dm+~ include U's); 

6~mm + 1, m + l  _ 

r n + l  

m + l  

i • q , m + l ;  q,  m + l  __  
m - -  1 

q 

q 

p m + l  

m + l  

d~ has been expressed in the original paper of Karle 
& Hauptman (1950), equation (25), from a minor of the 
initial determinant]" denoted by d. A comparison be- 
tween the determinant 6q, developed along one column, 
and 0~, given by equation (1), shows immediately that:  

Id~=O~l. (26) 

The coincidence is not fortuitous; it expresses an im- 
portant property in crystal-structure analysis which 
can be stated as follows: 

The expected phase ~o( Oq) of  a structure factor included in 
a Karle-Hauptman determinant given all other structure 
factors, is given by the middle of  the interval allowed 
by inequalities for this structure factor. 

This statement is a special case of the conclusion 
given above for the general multivariate case. 

We will show that in equation (24) not only has 6a 
a probability meaning given by equation (26), but 
r can also be connected with probability theory• 

Let us write the expression r 2 as follows: 
,~,, + 1, m + I 6~.~ 

r z = -m (25b) 
( ~ q , m + l ; q , m + i -  " ~ q , m + l ;  q , m + l  " 
m-i m-I 

We recognize in the first factor the expression for the 
2 already given in equation (6). The second variance aq 

factor also has the meaning of a variance, but it corre- 
sponds to a different set of random variables, although 
Am+ 1 is still the same, as shown below. 

Let us consider, for simplicity, that the unknown 
factor is E,,,+1,1 and the m-dimensional law is now: 

P(EI,z . . . .  El, q, . . .El,m,,El,m+O. 

In other words, starting from the matrix of Table 1, 
we have to interchange the first and last rows and then 
the first and last columns. After this interchange, the 

t In the Karle-Hauptman original paper the initial deter- 
minant was Dr,. But here, in connexion with probability 
theory, we consider Uq as an element of Dm+I. 
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structure factor Em+~.l is replaced by its conjugate 
El.m+1 in Am+v 

Now, from the general m-dimensional law, we can 
deduce a new conditional probability law where Dm 
is replaced by 61re'l, and el by a[: 

,~,~ 
( 0 " ; ) 2 =  , .~1 ,m+1;  1 , m + l  " 

v m _ J. 

The 6's are minors defined from the initial Dm+~ 
before the interchange described above. For any struc- 
ture factor Eq the same result is obtained after an ob- 
vious interchange between the qth and first row (and 
column). 

Finally r, for a given q and m, can be written as: 

r2=(aq . a'q) z . (250 

In other words, the radius of the allowed circle is 
equal to the geometrical mean of the variances asso- 
ciated with the two ways of expresssing a conditional 
probability law for one structure factor included in 
, d m + l .  

(b) Strict equalities 
In the following special cases inequality (24) becomes 

strict equality 

m = N :  

IU~-Oql=r; (Uq=UN+l,q belongstoDN+~). (27) 

m = N +  1: The relation (24) is still an equality but with 
r = 0  

I U~-Oq[=O or U~=Oa. (28) 

This equation can be written in the following form: 

1 N+I 
U q -  - 6~vq; u+ 2,u+ z ~ (-1)"+a6}"; ~+ 2'u+ 2U, . (29) 

p=l 
pq:q 

The structure factors Uq are elements of the last row 
and column of a Karle-Hauptman determinant of 
order N +  2 and the 6's are determinants as defined pre- 
viously: 

q N + 2  

p N + 2  

N + 2  

We notice that although DN+I=DN+2=O, only mi- 
nors of order N, not generally null, are involved in 
(29). This equation is valid for atoms of any atomic 
number. 

III. 3. Discussion 
In the general case, the principal trends of the con- 

nexion between inequality and probabilities theories 
are: 

- all equiprobability surfaces, defined by equation 
(21b) and having physical sense, are hyperellipsoids 
included within 'the inequality boundary hyperellip- 
soid' 

- the most probable set of phases corresponds to the 
centre of the allowed hyperellipsoid in the case of 
equation (14). 

In the special non-centrosymmetric case, s = m - 1 ,  
the boundary hyperellipsoid is reduced (in complex 
space) to an allowed circle, first given by Hauptman & 
Karle (1950); the radius r of this circle is recalled by 
equation (25), the most probable value, at the centre of 
the circle, is given by equation (26). The difference Xq 
between Eq and the actual value of Eq depends on r. 
From the theory developed in this paper, it appears 
that Xq enters several relations with different meanings 
as summarized in Table 2; equivalent relations involv- 
ing an order-(m+l)  determinant, the elements of 
which are assumed known except one, are also given. 

Table 2. Summary o f  the mathematical properties 
o f  Karle-Hauptman determinants 

Relations Relations 
involving involving 

the determinant expression (2) 

Dm+1>O IXg_<r. 1/N 
Dm+l i s  m a x .  

for the most ISql most prob- 
probable phase able phase = 0 Statistics rn < N 

DN+I=0 IXal=r. I/N Strict m = N  
DN+2=0 IXql =0 equalities m=N+ 1 

Meaning Restrictions 
Inequalities m < N 

For practical purposes, useful information can be 
provided with the approximate equation Xq=0, al- 
though it is strict only for m - - N +  1. The inequalities 
are useful only if r is small as shown in Fig. 4, where 
the calculation was done with the coordinates of isoni- 
azide: the order-30 determinant can be very restrictive 
for phases whereas the A3 is not at all. But, even if r 
is not small enough to restrict phases sufficiently, prob- 
ability theory can still provide useful information (in 
the example of Fig. 4, the correct values of I~ql are very 
small: 1 and 6°). 

Indeed, the approximate equation Xq=0 has been 
used for practical purposes even for m ~ N and has pro- 
vided the basis of procedures for direct determination 
of phases as will be pointed out in Paper III. 

IV. Efficiency of the probability laws 
for phase determination 

We consider the efficiency for phase determination of 
the general probability laws as well as that of the re- 
gression law (5). These distributions are characterized 
by the variance-covariance matrix [U] whose determi- 
nant is Din. 

The criterion of the highest efficiency we are seeking 
has been derived from a combination of information 
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theory and probability theory (Renyi, 1966). It states 
that: 
The information quantity which can be extracted from 
any Am+~ about any set ( E t . . .  Era) depends solely on 
the value of Dm : the Dm of smallest value provides the 
largest information obtainable about the phases of any 
set (E l . . .  Era); (de Rango, 1969). Here, the notion of 
information has a precise mathematical meaning 
(Shannon & Weaver, 1949). 

In order to examine the physical meaning of the 
above mathematical statement, we will use a geomet- 
rical construction. This geometrical image is based 
upon the fact that the equiprobability surfaces steadily 
decrease from the centre of the allowed region, where 
p(E~.. .  Era) is maximum, to the outer boundary, where 
p(E1. . .  E,,) should be zero. 

Clearly, the steeper the decrease, the more efficient 
the probability laws. Therefore, the decrease of prob- 
ability depends on: 

- the value of p(E~.. .  Em)  at the origin, which is 
inversely proportional to the square root of Dr,, 

- the distance from the centre of the hyperellipsoid 
to the outer boundary (zero probability) which de- 
creases in average as Dm decreases; however, this dis- 
tance is a function of the particular geometrical form of 
the hyperellipsoid for a given direction (see §III). 

Both factors are most favourable for the lowest value 
of Din, in agreement with the mathematical statement. 
Also, the geometrical construction of §III shows that 
the criterion for highest efficiency, i.e. a small value of 
Din, still applies for the phase determination of the last 
row of Am+~ by using only inequalities. 

The m-dimensional Laplace-Gauss law is based on 
the hypothesis that there exists no rational relationship 
between atomic coordinates. If such a relationship 
occurs and if the structure contains special trends (for 
instance several atoms lie in the same plane), then the 
probability law and the criterion of the highest efficiency 
are not strictly valid in the statistical sense, but, of 
course, the inequalities remain valid. 

In a forthcoming paper, both theories, inequalities 
and probabilities, will be used in practical structure 
determination. 

is the contribution to E~ of the S atoms at rj~ related 
to the j th  independent atom by the crystal symmetry. 
The system of m equations, 

I 
E/~q~ = x u .Ji- . . . x j l  31- . . . x n l  

=xlq + .xjq +...Xnq (I.2) 
IL  . . . . . . .  

"~- X l m  -Jl- X j m  " t -  • • • Xnm 

where n = N/S, can be condensed into one vector equa- 
tion: 

E =  ~ xj (I.3) 
j = l  

by using the vectors: 

E = ( E x . . .  Em)  x j = ( x j l  . . . Xjm ) • 

Consequently, for a given q the random variables 
xlq. • • x,,q are mutually independent. In simpler terms: 
columns in system (2) are mutually independent, but 
the random variables along each column (x's and E's) 
are linked to each other through the given variance- 
covariance matrix [U]. 

Let us denote by p l (x ) . . ,  p,(x) the probability law 
for each of the n variables xl • . .  x,,. As a result of the 
independence of atoms the probability law p(E) is given 
by the convolution product: 

p(E)=px(x) .pz(x) . . . ,  p,(x) .  (1.4) 

,/" "',,~ -- forbidden arc 

[ limiting circle 

', \ \ /*"~mostprobablephase(-24°) 

" "'-. _ ~ . ~ ~ ~ a l t l i ~ l w i i a i l c (  ( 1371) 19 °) 

APPENDIX I 
m-Dimensional Laplace-Gauss law 

Centrosymmetric case 

Assuming that the elements of the variance-covariance 
matrix [U] are given, the aim of this section is the eval- 
uation of the conditional joint probability of the m- 
dimensional random variable (E l . . .  Em). Let us set 

N/S 

q = l , . . . m ;  Eq= ~ x j q  (I.1) 
j - - - - 1  

where 
S 

xjq = ~_, gj exp [27:i(L-Hq). r:s] 
s = l  

/,- \¢__..__.-~- Forbidden arc 

~ limiting circle 

" ~ ~ . . . . ~  allowed arc 

~ J ~ most probable phase (-56 °) 
~ J  actual phase (-50 °) 

(b) 

Fig. 4. L imi ta t ion  on the phase  of  two  s t ruc ture  factors ,  ele- 
men t s  of  A30 for  isoniazide arising f r o m  inequali t ies  (24). 
The  correct  values are located very near  the middle  of  the  
a l lowed arc. Fo r  A3 all values are a l lowed since there is no  
intersect ion between the two circles. 
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The characteristic function is: 

C(u)-- I p(E) exp (2niu. E)dvE=H Cj(u) (I.5) 
,) VE j 

where u = ( u ~ . . .  Um) is an m-dimensional vector ex- 
pressed in a reciprocal-space reference system such 
that the scalar product is: 

u. E= ~ uqEq. 
q = l  

The second characteristic function K(u) is defined by: 

K(u)=log [C(u)]= ~ Kj(u)= ~ log [Cj(u)]. (1.6) 
J J 

Let us expand Cj(u) as a Maclaurin series:* 

The meaning of the kth term is obviously: 'average 
value of (2niu. x)k/k! ' 

O<3 L L 
1 (2niu x j) k = l - 2 n 2 ( u  x j) a + G ( u ) =  . . . . . .  

k=O 
(1.8) 

Up to k = 2 ,  these averages have very simple expres- 
sions; 
for k >_ 3 they are negligible if n ~ co. 

F o r k = 0  f p j (x )dvu=l .  
Vu 

If we assume that no atoms are in special positions, it 
follows that: 

for k =  1 (u. x j )=  u~xjq=O. 
q=l 

Therefore, 

K(u)= ~ Kj(u) = - 2n z ~ (u. xj) z + . . . .  (I.9a) 
J J 

By summing over j  and inverting the order of the sum- 
mations, we obtain: 

x.x,  =u+ , o> 
j = l  p=lq=l j 

where u is a column vector, u + a line vector, [U] the 
variance-covariance matrix. The proof of the basic 
equality: 

x, pxj~=erEq=UHq_np=U~p (I.11) 
J 

is obtained by replacing Ep and Eq in the product 
(Ep, E~) by their defining equations (I.1), because the 
'cross atom' terms (i # j )  vanish as a consequence of the 
mutual independence of atoms. 

Alternative proof of (I. 11) 
Les us recall the meaning ofxjp and xaa [equation (1)] 

as the contribution of S (equal) atoms to, respectively, 

* The index j is suppressed when it enters as an integration 
variable. 

En and En. Then by applying the Sayres-Hughes 
P . ~ "  . 

equations to these partial structure factors, we can 
write immediately" 

s 

xj~,x~q=g~ ~ exp [ (2niH~-Hp) .  Us] 
S = l  

and 

XjpXjq= VHq_Hp= Vqp . 
J 

We recognize in the right-hand side of equation (I. 10)a 
quadratic form which is 'definite-non-negative' be- 
cause [I2] is a definite-non-negative matrix. 

Terms k > 3 
Recalling that g1 = (N)-  1/2, we write" 

1 s 1 
xj~- ~/U ,~=1 exp [zni(L-H~) " rsJ]= - f ~  tj~ . 

Let us evaluate r" 

( U .  X j )  k k/2--1 ( ~ Uqtjq)k 

r ( u  X j )  2 : ( ~ Uqtdq) 2" 
q 

The ratio on the right-hand side is a function of the 
u's independent of N. Therefore r -+ 0 as N ~ co (for 
odd values of k, r is strictly null). 

Coming back to (I.9a), we write" 

K ( u ) =  - 2n2(u + [U]u) (I.9b) 
C(u)=exp [K(u)] =exp {-2nZ(u+[U]-lu)}.  (I.12 

This is an m-dimensional Laplace-Gauss function and 
p(E) is derived by a classical Fourier transformation. 

1 
p(E)= (21.c)m/2(Dm)l/2 exp{-½(E [U]-IE+)} (1.13) 

where D m is the determinant of the variance-covariance 
matrix [U]; [U]-1 is the inverse matrix of [U]. 

If we denote by Dp~ the elements of the inverse ma- 
trix, the quadratic form in the exponent is expressed 
by: 

E[U-I]E + = ~ ~ DvaEpEa = N Dm --  Am +' (1.14)" 
p = l  q = l  Dm 

APPENDIX II 
m-Dimensional  Laplace -Gauss  law 

Non-centrosymmetric  case 

Let us set: 
s 

EL_Hq= Eq= Aq + iB~ = Z gj 2 exp [2~i 
j = l  s = l  

x ( L -  Hq)rjs] 
where 

s 
Aq= xj~; xjq=gj ~. cos 2n(L-Hq)us  

j=l  s = l  

2 B~= yjq, yjq=g~ ~ sin 2n (L- t t~ )u~ .  
j=l s = l  

(II.1) 

(11.2) 

A C 30A - 4 
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Again, following the classical notation in probability 
theory, we consider the m-dimensional row vector E 
with complex coordinates: 

s 

E(E1...  Era) = ~] Zj with Z j=x j+ iy j  (II.3) 
j = l  

and the m-dimensional vectors A, B with real coordi- 
nates: 

A(A~,..Am), B(Bt. . .  Bm). 

By definition, the probability law for the m-dimen- 
sional random variables (E l . . .  Era) is identical to the 
probability law for the 2m-dimensional real variables: 
(AIBx, . . .Am,  Bin): 

p(E) =p(A,B). 

The calculation will be performed in real 2m-dimen- 
sional (Euclidian) space, but in the last step, the intro- 
duction of complex vectors in m-dimensional Hilbert 
space will lead to an expression which is formally very 
similar to equation (I. 13). 

We give the development of the theory following 
closely the development in the real case. The hypoth- 
esis of the mutual independence of atoms, leads to the 
fundamental equation: 

p ( A , B ) = p l ( x , y ) . .  . . . p , ( x , y )  . (II.4) 

The characteristic function is: 

C(u,t)= I p(A,B) exp [2zd(A. u + B .  t)]dVA,B 
VA,B 

= n  G(u,t). (II.5) 
J 

The second characteristic function is: 

K(u,t)=log C(u,t)= ~.. Kj(u,t). 
J 

The development in Maclaurin series leads to" 

(II.6) 

Cj(u,t)= I pj(x,y) ~ ([2hi(u" x+t'Y)]k) dvx,y (II.7) 
vx,y k=o k! 

L 
oo 1 [2~i(u x + t  y)]k (I1.8) Cj(u,t)-- ~. ~-. . . 

k = 0  

K ( u , t ) = ~  K: (u , t )= -2~  2 ~ (u. x + t .  y)2. (II.9) 
J J 

Let us define now the complex vector: 

w = u + i t .  
We prove next that: 

(u. x s+ t .  yj)2=½w+[U]w. (11.10) 
J 

The development of the left-hand side gives, after 
elementary manipulations: 

~] (u. xj + t .  y j)2= ~ ~ upu~( ~ x~xj-~) 
j p = l  q = l  j 

+ tpt~ ( ~ yjpy:~) + Uptq( ~ xjpyjq) 
J d 

+ uqtp( ~ yjpxj~) .  (II.lOa) 
J 

Following a reasoning similar to that in the real case, 
it is not difficult to prove that" 

where 

E XjpXjq= E YJPYJq= ½aqp 
J J 

xjpyj~ = - ~ yjpxj~ = - ½b~p (II. 11) 
J J 

Uqp = a~p + ibqp . 

By introducing (II. 11) in (II. 10a) we arrive at (II. 10). 
The proof that terms in (11.8) with k = 3 are negligible 
as n --~c~ is similar to that of the real case. We arrive 
then at: 

C(u. t)=exp [K(u. t)l=exp { -  rc2(w+[U]w). (II.12) 

By Fourier inversion we obtain finally: 

1 
p(E) =p(A,B)-  n,,D----~ exp ( -  E[U]- 1E+). (11.13) 

As in the centrosymmetric case, the Hermitian form in 
the exponent of equation (II. 13) is expressed by: 

E[U]-IE+ = ~ D p ~ E p E g = N  Dm-Am+~ (II.14) 
p=l ~=1 Dm 

Remark:  in equations (II.12) and (II.13) functions 
C(u,t) and p(A,B) are real-valued functions of real 
variables since the Hermitian forms w+[U]w and 
E[U]-IE + are real. Therefore the expression: 

p(E)=p(E~  . . . Era) 

is a condensed way of writing: 

p ( E ) = p ( A , B ) = p ( A a ,  B~, . . . Am, Bin), 

and we consider E as a 2m-dimensional Laplacian real 
random variable. The corresponding variance-covari- 
ance matrix is a real symmetric matrix constituted by 
the four sub-matrices: 

[Uxx], [Uyx], [Uxy], [Uyd 

which satisfy the conditions (Fortet, 1961): 

[Uxx] and [Uyy] are symmetric and [Uxy] = -[Uyx] 
[U]xx + [ u ] ~  = ½([F]* + [u]) 

[ ~ x - E ~ x Y = ½ ( [ ~ * - [ ~ ) .  

But, as a consequence of (II.11), we have: 

[ ~ x x  = [V]yy = ¼([V] + [F]*) 
[¼~x = - [ ~ x Y  = ¼([~*-  [u]). 
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Using the theory of representation analysis [Bertaut, E. F. (1968). Aeta Cryst. A24, 217-231] and with 
the aid of some newly introduced symmetry symbols we present the stereographic projections for all 
the magnetic symmetry groups. These groups are useful in studying the properties of magnetically 
ordered crystals. 

Introduction 

The aim of the present paper is to use the information 
contained in several related papers (Bertaut, 1968; 
Boyle, 1969; Krishnamurti & Gopalakrishnamurty, 
1969) to construct and present the stereographic projec- 
tions of all the magnetic point groups. The stereo- 
grams for all these groups have been given by Koptsick 
(1966) in a rather inconvenient and unattractive fashion 
using red and black colours. We show here by intro- 
ducing some new symmetry symbols, which are really 
extensions of the well known ordinary point-group 
symmetry symbols, that the construction of the stereo- 
graphic projections for all the magnetic symmetry 
groups becomes relatively simple. Furthermore the 
method emphasizes the idea of antisymmetry in a very 
instructive manner. In the next section we shall briefly 
introduce the idea of antisymmetry and outline the 
method used by Bertaut (1968), Boyle (1969) and 
Krishnamurti & Gopalakrishnamurti (1969) to con- 
struct the magnetic symmetry g~oups. 

Antisymmetry and representation theory 

In recent years neutron diffraction studies have revealed 
that all macroscopic properties of magnetic crystals 
should be characterized by one of the magnetic groups 
or Shubnikov groups (Shubnikov, 1951; Shubnikov & 

Belov, 1964; Tavger & Zaitsev, 1956; Opechowski & 
Guccione, 1965). This is because the 32 ordinary 
crystallographic point groups merely describe the 
possible point symmetry of the mean charge-density 
function Q(r) of the crystal in the equilibrium state. In 
magnetic crystals however, besides Q(r) there may also 
be present a non-vanishing time-averaged distribution 
of current density J(r) and spin density S(r), or in other 
words a total magnetic moment density/~(r) = J ( r ) +  
S(r). Now the symmetry of ¢t(r) is characterized by a 
special symmetry transformation which involves the 
reversal of the vector direction (Tavger & Zaitsev, 1956; 
Dimmock & Wheeler, 1962a, b; Wigner, 1959). This 
specific operation of vector reversal, which is not 
present in the ordinary crystallographic point groups, 
is incorporated in magnetic groups by means of a new 
antisymmetry operator R which simply reverses the 
sign of magnetic moment at each point in space but 
does not act on the space coordinates. Shubnikov 
(1951) introduced the idea of antisymmetry by studying 
the symmetry groups of the polyhedra with coloured 
faces and derived 122 coloured groups. These groups 
have now been shown to be isomorphic with the 
magnetic groups and are therefore appropriate for 
describing ordered magnetic crystals. The Shubnikov 
antisymmetry operator may be thought of as a colour- 
changing operator (i.e. changing black ~ white) if the 
lattice points are thought of as having two possible 
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